2ちゃんねる ★スマホ版★ ■掲示板に戻る■ 全部 1- 最新50  

■ このスレッドは過去ログ倉庫に格納されています

不等式への招待 第7章

1 :不等式ヲタ ( ゚∀゚):2013/03/09(土) 22:14:39.95
ある人は蝶を集め、ある人は切手を収集し、ある人は不等式を集める…
          ___          ----- 参考文献〔3〕 P.65 -----
    |┃三 ./  ≧ \   
    |┃   |::::  \ ./ | 
    |┃ ≡|::::: (● (● |  不等式と聞ゐちゃぁ
____.|ミ\_ヽ::::... .ワ......ノ     黙っちゃゐられねゑ!
    |┃=__    \           ハァハァ…
    |┃ ≡ )  人 \ ガラッ

まとめWiki http://wiki.livedoor.jp/loveinequality/

過去スレ
・不等式スレッド (第1章)http://science3.2ch.net/test/read.cgi/math/1072510082/
・不等式への招待 第2章 http://science6.2ch.net/test/read.cgi/math/1105911616/
・不等式への招待 第3章 http://science6.2ch.net/test/read.cgi/math/1179000000/
・不等式への招待 第4章 http://science6.2ch.net/test/read.cgi/math/1245060000/
・不等式への招待 第5章 http://uni.2ch.net/test/read.cgi/math/1287932216/
・不等式への招待 第6章 http://uni.2ch.net/test/read.cgi/math/1332950303/
・過去スレのミラー置き場 http://cid-d357afbb34f5b26f.skydrive.live.com/browse.aspx/.Public/

姉妹サイト(?)
キャスフィ 高校数学板 不等式スレ2
http://www.casphy.com/bbs/test/read.cgi/highmath/1359202700/l50
Yahoo! 掲示板 トップ > 科学 > 数学
http://messages.yahoo.co.jp/bbs?action=t&board=1835554&sid=1835554&type=r&first=1

2 :不等式ヲタ ( ゚∀゚):2013/03/09(土) 22:22:07.38
・不等式の和書
[1] 不等式,ハーディ・リトルウッド・ポリヤ,シュプリンガー,2003年
   http://amazon.jp/o/ASIN/4431710566
[2] 不等式,大関信雄・青木雅計,槇書店,1967年(絶版)
[3] 不等式への招待,大関信雄・大関清太,近代科学社,1987年
   http://amazon.jp/dp/4844372661
[4] 不等式入門(数学のかんどころシリーズ9),大関清太,共立出版,2012年
   http://www.kyoritsu-pub.co.jp/bookdetail/978432001...
[5] 不等式入門,渡部隆一,森北出版,2005年
   http://amazon.jp/o/ASIN/4627010494
[6] 不等式の工学への応用、海津聰、森北出版,2004年
   http://amazon.jp/o/ASIN/4627075812
[7] 不等式(モノグラフ4),染取弘,科学新興新社,1990年
   http://amazon.jp/o/ASIN/4894281740
[8] 不等式 〜 21世紀の代数的不等式論 〜,安藤哲哉,数学書房,2012年
  http://amazon.jp/dp/4903342700

・不等式の項目を含む和書
[1] 数学トレッキングツアー第3章「相加平均≧相乗平均」,東京理科大学数学教育研究所,教育出版,2006年
   http://amazon.jp/o/ASIN/4316801988
[2] 獲得金メダル! 国際数学オリンピック第1章「不等式」,小林一章,朝倉書店,2011年
   http://www.asakura.co.jp/books/isbn/978-4-254-1113...
[3] 数学オリンピック事典,数学オリンピック財団,朝倉書店,2001年
   http://amazon.jp/o/ASIN/4254110871
[4] 三角法の精選103問(シリーズ:数学オリンピックへの道 2),T.アンドレースク・Z.フェン著,朝倉書店,2010年
   http://www.asakura.co.jp/books/isbn/978-4-254-1180...
[5] 最大値と最小値の数学,P.J.ナーイン,シュプリンガー,2010年
   http://amazon.jp/dp/4621062131
[6] 最大・最小(数学one Point双書24),服部泰,共立出版,1979年
   http://amazon.jp/dp/4320012445

3 :不等式ヲタ ( ゚∀゚):2013/03/09(土) 22:24:39.92
・不等式の洋書
[1] The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities,J. M. Steele,Cambridge Univ. Pr.,2004年
   http://amazon.jp/o/ASIN/052154677X
[2] Inequalities: A Mathematical Olympiad Approach,Birkhaeuser Basel,2009年
   http://amazon.jp/dp/3034600496
[3] Inequalities: Theorems (Techniques and Selected Problems),Zdravko Cvetkovski,Springer,2012年
   http://amazon.jp/gp/product/3642237916
[4] Analytic Inequalities,Xingzhi Zhan,Dragoslav S., Dr. Mitrinovic,Springer,1970年
   http://www.amazon.co.jp/dp/3642999727
[5] Matrix Inequalities (Lecture Notes in Mathematics, No.1790),Xingzhi Zhan,Springer,2002年
   http://amazon.jp/dp/3540437983
[6] Matrix Analysis (Graduate Texts in Mathematics),Rajendra Bhatia,Springer,1996年
   http://amazon.jp/dp/0387948465

・不等式の記事
[1] 特集 「現代の不等式」 (数理科学 No.386) ,サイエンス社,1995年8月号(絶版)
[2] 特集 「不等式の世界」 (数学セミナー No.2-569) ,日本評論社,2009年2月号
   http://amazon.jp/o/ASIN/B001O9UIZ8
[3] 連載 「不等式の骨組み」 (大学への数学 vol.53,全12回,各4ページ),栗田哲也,東京出版,2009年4月号-2010年3月号
   http://www.tokyo-s.jp/index.shtml

4 :不等式ヲタ ( ゚∀゚):2013/03/09(土) 22:26:43.52
・不等式の埋蔵地
[1] RGMIA http://rgmia.vu.edu.au/
[2] Crux Mathematicorum Synopses http://www.journals.cms.math.ca/CRUX/synopses/
[3] Maths problems http://www.kalva.demon.co.uk/
[4] Mathematical Inequalities & Applications http://www.ele-math.com/
[5] American Mathematical Monthly http://www.maa.org/pubs/monthly.html
[6] Problems in the points contest of KöMaL http://www.komal.hu/verseny/feladatok.e.shtml
[7] IMO リンク集 http://imo.math.ca/
[9] Mathematical Olympiads Correspondence Program http://www.cms.math.ca/Competitions/MOCP/
[10] Mathematical Excalibur http://www.math.ust.hk/excalibur/
[11] MathLinks Contest http://www.mathlinks.ro/Forum/contest.html
[12] MATH PROBLEM SOLVING WEB PAGE http://www.math.northwestern.edu/~mlerma/problem_s... (要自動登録)
[13] Wolfram MathWorld http://mathworld.wolfram.com/
[14] GRA20 Problem Solving Group http://www.mat.uniroma2.it/~tauraso/GRA20/main.htm...
[15] American Mathematical Monthly Problems http://www.mat.uniroma2.it/~tauraso/AMM/amm.html
[16] Journal of Inequalities and Applications http://www.hindawi.com/journals/jia/
[17] すうじあむ http://suseum.jp/gd/all_berry_list/3504

・海外不等式ヲタの生息地
[1] Journal of Inequalities in Pure and Applied Mathematics http://jipam.vu.edu.au/
[2] MIA Journal http://www.mia-journal.com/
[3] MathLinks Math Forum http://www.mathlinks.ro/Forum/forum-55.html

5 :132人目の素数さん:2013/03/09(土) 22:35:09.24
〔問題〕
a,b,c>0, (r=2/3 または r=1 または r≦0) のとき
 {2a/(b+c)}^r + {2b/(c+a)}^r + {2c/(a+b)}^r ≧ 3.
を示せ。

 casphy - 高校数学 - 不等式2 - 032-035, 042-043
 USAMO ?

6 :KingMathematician ◆LoZDre77j4i1 :2013/03/10(日) 07:31:04.00
円周率をπと書く. 223/71 < π < 22/7. Archimedes の時代から知られていたらしい.

7 :132人目の素数さん:2013/03/10(日) 23:03:05.50
不等式大好きでつ!

8 :132人目の素数さん:2013/03/10(日) 23:11:29.38
>>2
追加でつ!

不等式への招待 第6章
http://uni.2ch.net/test/read.cgi/math/1332950303/901

901 名前:132人目の素数さん[sage] 投稿日:2012/12/06(木) 23:47:56.44
美しい不等式の世界 ─数学オリンピックの問題を題材として─

A5/272ページ/2013年01月25日
ISBN978-4-254-11137-8 C3041
定価3,990円(税込)
佐藤淳郎 訳

"Inequalities A Mathematical Olympicd Approach"の翻訳。
数学全般で広く使われる有名な不等式や実用的テクニックを系統立てて説明し,
数学オリンピックの問題をふんだんに使って詳しく解説。
多数の演習問題およびその解答も付す。

http://www.asakura.co.jp/books/isbn/978-4-254-11137-8/



きたか…!!

  ( ゚д゚ ) ガタッ
  .r   ヾ
__|_| / ̄ ̄ ̄/_
  \/    /

9 :132人目の素数さん:2013/03/11(月) 12:45:08.18
>>5
そういえば、東大の入試で円周率の不等式が出て話題になったな。
簡単と思いきや、出来が悪かったそうだ。


問題.円周率 π は、3.05 より大きいことを証明せよ。

10 :不等式ヲタ ( ゚∀゚):2013/03/12(火) 00:25:08.56
>>2 の修正
すまなんだ
まとめWikiからコピペしたら、長いURLは ...... と略されるのを忘れていました

>>2
・不等式の和書
[4] 不等式入門(数学のかんどころシリーズ9),大関清太,共立出版,2012年
  http://www.kyoritsu-pub.co.jp/bookdetail/9784320019898

・不等式の項目を含む和書
[2] 獲得金メダル! 国際数学オリンピック第1章「不等式」,小林一章,朝倉書店,2011年
  http://www.asakura.co.jp/books/isbn/978-4-254-11132-3/
[4] 三角法の精選103問(シリーズ:数学オリンピックへの道 2),T.アンドレースク・Z.フェン著,朝倉書店,2010年
  http://www.asakura.co.jp/books/isbn/978-4-254-11808-7/

>>4
・不等式の埋蔵地
[12] MATH PROBLEM SOLVING WEB PAGE
  http://www.math.northwestern.edu/~mlerma/problem_solving/ (要自動登録)

         ∧_∧
         (´Д` )   死んでお詫びを…
         /  y/  ヽ      
    Σ(m)二フ ⊂[_ノ
        (ノノノ | | | l )
    ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄

11 :132人目の素数さん:2013/03/12(火) 15:48:06.49
最近不等式の証明の世界を知りました高一です
学校ではn=2の場合においてのAM-GM不等式しか習いませんでした

ですが、最近とある人から数オリクラスの不等式の証明もある事を聞き興味を持ってます
まずこのスレに出てくるような問題を解くために勉強すべき事はなんでしょうか
現時点で三角関数までしかやってないです

12 :132人目の素数さん:2013/03/12(火) 17:12:10.60
>>11
あらゆる問題に触れる

13 :132人目の素数さん:2013/03/12(火) 19:19:54.75
何をおいてもまずは微分積分を身に着けてから
数Vの教科書を取り寄せて勉強するべし

14 :132人目の素数さん:2013/03/13(水) 00:24:33.98
>>9

原点(0,0)を中心とする単位円上に2点
 A (1, 0)
 B (1/√2, 1/√2)
をとる。弧AB は円周の 1/8 である。
 |AB|^2 = (1 - 1/√2)^2 + (1/√2)^2
    = 2 - √2 > 2 - 1.414775 = 0.585225 = 0.765^2,
 AB = √(2-√2) > 0.765
 π > 4・AB > 3.06

15 :132人目の素数さん:2013/03/13(水) 01:05:14.09
>>9
2003年の東大理系の問題だったんだよね。

当時は小学校で円周率がおよそ3で済ます、ということになり、それでは数学教育として余りにも酷い、
というメッセージを世間に送る意味で出題させれたという時代背景があった。

一応日本の最高学府のしかも理系の問題でそれを提示することで、当時の数学教育に反論するのが狙い。
東大ともなると、単に難しい問題を出すだけでなく、高校数学界への影響も考慮してと意外と大変ですね。

16 :132人目の素数さん:2013/03/13(水) 12:48:17.91
今年の入試問題
http://nyushi.yomiuri.co.jp/13/sokuho/hokkaido/koki/sugaku/images/mon1_1.gif

17 :132人目の素数さん:2013/03/13(水) 21:44:36.82
>>14
C (cosθ, sinθ)
とおくと、
 |AC|^2 = (1-cosθ)^2 + (sinθ)^2
     = 2(1-cosθ),

(例) θ=π/6 のとき
  C((√3)/2, 1/2)

 |AC|^2 = 2 - √3 = 0.268
 π > 6|AC| > 3.10

 |BC|^2 = 2 - √(3/2) - √(1/2) = 0.068
 π > 12|BC| > 3.13

18 :132人目の素数さん:2013/03/14(木) 00:28:02.56
>>17
円周率の評価の証明で、弧度法を使ったらダメだろうが!

証明すべきこと(1周=2π)を使っているんだから、全然証明になってない。

19 :132人目の素数さん:2013/03/14(木) 00:34:32.89
1周=2πはsinの周期(あるいはexpの周期)からわかることです
問題ありません

20 :132人目の素数さん:2013/03/14(木) 00:38:11.02
証明すべきことは
>問題.円周率 π は、3.05 より大きいことを証明せよ。
なんだが

21 :132人目の素数さん:2013/03/14(木) 00:44:08.22
>>20
円周率の定義を知らないのか?

22 :132人目の素数さん:2013/03/14(木) 00:45:34.17
>>21
教えて

23 :132人目の素数さん:2013/03/14(木) 01:20:56.01
>>16
(*゚∀゚)=3 ハァハァ…してもよろしいでしょうか?

24 :132人目の素数さん:2013/03/14(木) 02:14:13.46
>>15
円周率が3となっていたのは日能研の電車の吊り広告での話
実際の教科書見たらそうじゃないってのはすぐにわかるのに
メディアが円周率3って大きく取り上げた
それだけのこと

25 :132人目の素数さん:2013/03/14(木) 02:26:39.53
>>16
(1) x=1 で最小
(2) x=y で最小、
         最小値が x=y=1 のとき 0になる
おしまい

26 :132人目の素数さん:2013/03/15(金) 00:26:03.20
>>16 (1)

t≠1 のとき、f(x) = t^x は下に凸。
 {f(c)-f(0)}/(c-0) ≧ f '(0) ≧ {f(0)-f(-b)}/{0-(-b)},

27 :132人目の素数さん:2013/03/15(金) 04:39:07.65
>>16 (2)
重み付き相加相乗平均より、
 (a/(a+b+c))s + (b/(a+b+c))t + (c/(a+b+c))u ≧ s^(a/(a+b+c)) t^(b/(a+b+c)) u^(c/(a+b+c)).
上式に、 s = x^(a+b+c), t = y^(a+b+c), u = 1 を代入して整理。

28 :132人目の素数さん:2013/03/15(金) 23:47:38.17
>>16 (1)
上式に、 a=0, s>0, t=T^(b+c), u=1 を代入して整理。

29 :132人目の素数さん:2013/03/16(土) 02:05:50.63
今年の入試問題
http://kaisoku.kawai-juku.ac.jp/nyushi/honshi/13/kb2-21p/5.gif

30 :132人目の素数さん:2013/03/16(土) 16:33:04.08
x_i(1≦i≦n+1)は正の実数でx_1+x_2+……+x_n=1, x_(n+1)=0を満たす時
Σ[k=1_n]{√(Σ[p=1_k]x_k)×√(1+Σ[q=k+1_n+1]x_q)×x_k}>π/4

31 :132人目の素数さん:2013/03/17(日) 00:30:31.82
>>30
半径1の四分円を幅がx_iになるようにスライスして面積を考える

32 :132人目の素数さん:2013/03/25(月) 03:03:59.89
>>30
【審議凍結】
    ______________
   /|//              / / /|
 //|/ /         // / /  |
 | ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄|.///.|
 |/ |   .∧,,∧.  ∧,,∧./// │   .|
 |  ∧∧(´‐ω‐`)(´‐ω‐`)∧∧.  .|   .|
 | (´‐ω‐).∧∧) (∧∧ (‐ω‐`) .│///|
 | | U (´‐ω‐`)(´‐ω‐`) と ノ ./| .   |
 |  u-u (l    ) (    ノ u-u / .|/// |
 |       `u./ '/u-u'       |  /
 |//    //    //    .|/
   ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄

33 :132人目の素数さん:2013/03/26(火) 00:14:38.70
>>30

 y_0 = 1,  
 y_k = Σ[q=k+1,n] x_q 
 y_n = 0,
とおくと、y_k は単調減少で
 (左辺) = Σ[k=1_n] √(1 - y_k) × √(1 + y_k) × {y_(k-1) - y_k}
     = Σ[k=1_n] √{1 - (y_k)^2} × {y_(k-1) - y_k}
     > Σ[k=1_n] ∫[y_k, y_(k-1)] √(1-yy) dy
     = ∫[0,1] √(1-yy) dy   (半径1の四分円 >>31)
     = π/4.

34 :132人目の素数さん:2013/03/26(火) 00:28:41.47
>>29
どこの入試問題ですか?

35 :132人目の素数さん:2013/03/26(火) 00:40:00.39
問題の表記や文字から神戸大

36 :132人目の素数さん:2013/03/30(土) 21:23:53.23
〔問題〕
 √(1+xx) − |x| = F(x) とおくとき、次を示せ。

(1) |xy|≦1/2 ⇒ F(x) + F(y) ≧ 1,

(2) |xyz| ≦ (4/3)^3 ⇒ F(x) + F(y) + F(z) ≧ 1,

(3) |xy| ≧ (3/4)^2 ⇒ F(x) + F(y) ≦ 1,

 [元スレ.414, 459, 482]
 casphy - 高校数学 - 不等式スレ [1-919]

37 :132人目の素数さん:2013/03/30(土) 23:05:12.60
>>36

(1) 分子を有利化する。
 F(x) + F(y) -1 = √(1+xx) + √(1+yy) - (1+x+y)
  = {2√(1+xx)・√(1+yy) - (-1+2x+2y+2xy)}/D1
  = {1 + 2(1-2xy)(1+2x+2y)}/(D1・D2)
  ≧ 0,    (← |xy|≦1/2)

ここに、D1 = √(1+xx) + √(1+yy) + (1+x+y) >0,
    D2 = 2√(1+xx)・√(1+yy) + (-1+2x+2y+xy) >0,

(3) 上と同様に
 1 + 2(1-2xy)(1+2x+2y)
  = 1 + 2(1-2GG)(1+2x+2y)
  ≦ 1 + 2(1-2GG)(1+4G) (← AM≧GM)
  = (3-4G)(1+2G)^2
  ≦ 0,         (← G≧3/4)

38 :132人目の素数さん:2013/04/28(日) 07:48:43.97
実数x,y,zがx^2+y^2+z^2=1 を満たすとき
xy^2 + yz^2 + zx^2 のとり得る値の範囲はどうもとめればいいでしょyか

39 :132人目の素数さん:2013/04/28(日) 10:08:16.03
x≦y≦zとしてあげたらいいんじゃない?

40 :132人目の素数さん:2013/04/29(月) 19:19:55.62
>>38
キャスフィーの解答....

コーシーにより
 (xy^2 + yz^2 + zx^2)^2 ≦ {(xy)^2 + (yz)^2 + (zx)^2}(y^2 + z^2 + x^2),
 等号成立は x=y=z のとき,
とし、右辺に
 XY+YZ+ZX = {2(X+Y+Z)^2 -(X-Y)^2 -(Y-Z)^2 -(Z-X)^2}/6
      ≦ (1/3)(X+Y+Z)^2,
を使えばいいんじゃない?

 (xy^2 + yz^2 + zx^2)^2 ≦ (1/3)(x^2 + y^2 + z^2)^3 = 1/3,

∴取り得る値の範囲は −1/√3 〜 1/√3.
  (x=y=z=±1/√3 のとき)

41 :132人目の素数さん:2013/04/30(火) 15:56:19.65
a,b,c∈R
(a^2+b^2+c^2)^2 ≧ 3(ab^3+bc^3+ca^3)

42 :132人目の素数さん:2013/04/30(火) 21:32:41.45
>>41
その問題は [第5章.288] のように、
 p = a^2 -ca +bc,
 q = b^2 -ab +ca,
 r = c^2 -bc +ab,
とおくといいらしいよ。

 p + q + r = a^2 + b^2 + c^2,
 pq + qr + rp = ab^3 + bc^3 + ca^3,
より
 (a^2 +b^2 +c^2)^2 - 3(ab^3 +bc^3 +ca^3)
  = (p+q+r)^2 - 3(pq+qr+rp)
  = (1/2){(p-q)^2 + (q-r)^2 + (r-p)^2}
  ≧ 0,

 [第5章.268-269, 284-290]
 [キャスフィー 不等式1-517, 563]

43 :132人目の素数さん:2013/04/30(火) 22:02:48.24
〔類題〕
a,b,c ≧ 0 のとき
 (a^2 +b^2 +c^2)^2 ≧ 3{a^(4/3)・b^(8/3) + b^(4/3)・c^(8/3) + c^(4/3)・a^(8/3)},

(略解)
相加・相乗平均により
 (ab)^2 + (ab)^2 + b^4 = (a^2 +a^2 +b^2)b^2 ≧ 3a^(4/3)・b^(8/3),
 循環的にたす。

44 :132人目の素数さん:2013/04/30(火) 22:33:15.02
第5章とはどの書物のことでしょうか

45 :132人目の素数さん:2013/04/30(火) 23:03:40.70
スレタイをよく読め

46 :132人目の素数さん:2013/04/30(火) 23:09:46.08
ああああああそうか
すみません

47 :132人目の素数さん:2013/05/26(日) 20:35:53.55
〔問題〕
n∈N のとき、
 1/{2n + 4/(n+3)} < ∫[0,π/4] {tan(x)}^n dx < 1/(2n),
を示せ。(ブリジッタ)

 casphy - 高校数学 - ∫積分∫ - 046

48 :132人目の素数さん:2013/05/31(金) 23:01:32.22
>>47
 キャスフィーの解答....

(右)
 tan(x) = t とおくと、dx = dt/(1+tt),
 1+tt > 2t, (← 相加・相乗平均)
 I_n = ∫[0,1] (t^n)/(1+tt) dt
    < ∫[0,1] t^(n-1) /2 dt
    = [ (t^n) /(2n) ](x=0,1)
    = 1/(2n),
(左)
 I_n = 1/(n+1) - I_(n+2)
   > 1/(n+1) - 1/{2(n+2)}
   = (n+3)/{2(n+1)(n+2)}
   = (n+3)/{2n(n+3) + 4}
   = 1/{2n + 4/(n+3)},

49 :132人目の素数さん:2013/06/03(月) 22:28:46.67
>>48

 I_n > 1/(n+1) - 1/{2(n+2)}
    = ∫[0,1] (t^n)(1 - t/2) dt,
は t=1 で接線を引いて
  1/(1+tt) ≧ 1 - t/2,
としたことに相当する。
さらに
 1/(1+tt) ≦ (5-4t+tt)/4,
から、
 I_n < {5/(n+1) -4/(n+2) +1/(n+3)}/4
    = (nn+6n+10)/{2(n+1)(n+2)(n+3)}
    = (nn+6n+10)/{2n(nn+6n+10) +2(n+6)}
    = 1/{2n + 2(n+6)/[n(n+6)+10]}
    = 1/{2n + 2/[n + 10/(n+6)]}.

50 :132人目の素数さん:2013/06/03(月) 23:11:29.81
キャスフィーから....

〔問題731〕
0 < |x| < π/2 のとき、
 sin(x)/x > cos(x/√3) > cos(x)^(1/3),
              (でえ)

51 :132人目の素数さん:2013/06/05(水) 23:07:37.09
↑のハイパボリック版...

〔問題738〕
 sinh(x)/x > cosh(x/√3) > cosh(x)^(1/3),
               (prime_132)


cos(√t) (0<t<π^2)、cosh(√t) は下に凸らしい....

52 :132人目の素数さん:2013/06/09(日) 21:28:40.72
>>50
 g(t) = cos(√t) は下に凸。3倍角公式から、
 cos(x/√3)^3 = {3cos(x/√3) + cos((√3)x)}/4
      = {3g(xx/3) + g(3xx)}/4
      > g(xx)   (← Jensen)
      = cos(x),
 
>51 右
 g(-t) = cosh(√t) は下に凸。3倍角公式から、
 cosh(x/√3)^3 = {3cosh(x/√3) + cosh((√3)x)}/4
      = {3g(-xx/3) + g(-3xx)}/4
      > g(-xx)   (← Jensen)
      = cosh(x),

53 :132人目の素数さん:2013/06/09(日) 21:33:06.16
>>52

 g(t) は t≦20 で下に凸。

(略証)
・t>0 のとき
 g(t) = cos(√t),
 g '(t) = -sin(√t)/(2√t),
 g "(t) = {sin(√t) - (√t)cos(√t)}/(4t√t),
 そこで sinθ - θ・cosθ = 0, θ>0 となる最小のθを求める。
 1/θ = 1/tanθ = tan((3/2)π - θ) > (3/2)π - θ,
 1/θ + θ > (3/2)π > (20 + 1)/(√20),
 θ > √20 ≧ √t,

・t≦0 のとき
 マクローリン展開
 g(-t) = 1 + (1/2!)t + (1/4!)tt + ・・・・ + {1/(2k)!}t^k + ・・・・
 の係数がすべて正。

54 :132人目の素数さん:2013/06/10(月) 20:40:07.13
>>53

θ 〜 4.493409457909
  = (3/2)π - 0.21897952247563

√20 〜 4.472135955

55 :132人目の素数さん:2013/06/16(日) 00:09:30.45
左側はマクローリン展開。

>>50
 sin(x)/x > 1 - xx/3! + (x^4)/5! - (x^6)/7!
    = 1 - xx/3! + (x^4)/216 + (x^4)(1/270 - xx/7!)
    > 1 - xx/3! + (x^4)/216   (← xx<14)
    > cos(x/√3),

>>51
 2k+1 ≦ 3^k,
 sinh(x)/x = 納k=0,∞) (xx)^k/(2k+1)!
      > 納k=0,∞) (xx/3)^k/(2k)!
      = cosh(x/√3),

56 :132人目の素数さん:2013/06/16(日) 00:18:37.18
成程

57 :132人目の素数さん:2013/06/18(火) 22:07:49.29
〔類題〕
|xyz| ≦1 のとき、次を示せ。
 √(1+xx) + √(1+yy) + √(1+zz) -|x| -|y| -|z| ≧ 1,

[前スレ.414、459、482]

58 :132人目の素数さん:2013/06/18(火) 22:12:24.34
>>57
キャスフィーの解答....

 √(1+xx) - |x|
   = 1/{√(1+xx) + |x|}
   ≧ 1/(1+2|x|)
   = X/{X + 2|x|^(1/3)}
   ≧ X/{X + 2/|yz|^(1/3)}   (x≦1/yz)
   ≧ X/{X + 1/|y|^(2/3) + 1/|z|^(2/3)}
   = X/(X + Y + Z),
ここに、X = 1/|x|^(2/3)、Y = 1/|y|^(2/3)、Z = 1/|z|^(2/3),

59 :132人目の素数さん:2013/07/12(金) NY:AN:NY.AN
a, b, c>0, (1/ab)+(1/bc)+(1/ca)=1 のとき.

(a-1)(b-1)(c-1)>=2(3√3-5)を示せ。

60 :132人目の素数さん:2013/07/17(水) NY:AN:NY.AN
>>59
例によって基本対称式を
 a+b+c = s, ab+bc+ca = t, abc = u,
とおく。題意より
 s = u,
 9/t = 9/(ab+bc+ca) ≦ 1/(ab) + 1/(bc) + 1/(ca) = 1,
 t ≧ 9,
したがって
 (4t-9)[t + 3(2√3 -3)]^2 - 4t^3 = (t-9){3(16√3 -27)t + 27(2-√3)^2} ≧0,

Schur不等式(n=-2)より
 0 ≦ F_(-2)(a,b,c)
  = abc・F_1(1/a,1/b,1/c)
  = (t^3 -4stu +9uu)/uu
  = {4t^3 - (4t-9)(s+u)^2}/(4uu) (← s=u)
  ≦ (4t-9){[t + 3(2√3 -3)]^2 - (s+u)^2}/(4uu),

∴ [t + 3(2√3 -3)] ≧ s+u,
∴ (a-1)(b-1)(c-1) = u -t +s -1 ≦ 2(3√3 -5),

61 :132人目の素数さん:2013/07/18(木) NY:AN:NY.AN
昨日行ったファミレス。席に着くなり「ただいま○○フェアで
○○○○がお勧めです」と言うので「じゃあそれを」と頼んだら
「申し訳ありません、本日は完売となっております」って。
じゃあ勧めるなよおい。完売でもとにかく言わないといけないという
決まりでもあるのかね。

62 :nobu:2013/07/20(土) NY:AN:NY.AN
mixi招待してください

63 :132人目の素数さん:2013/07/20(土) NY:AN:NY.AN
>>59
キャスフィーの解答から....


a>1, b>1, c>1, で示せばいい。
附帯条件は
 0 = (a-1)(b-1)(c-1) + (a-1)(b-1) + (b-1)(c-1) + (c-1)(a-1) -2
  ≧ (a-1)(b-1)(c-1) + 3{(a-1)(b-1)(c-1)}^(2/3) -2
  = GGG +3GG -2
  = (G+1)^3 -3(G+1)
  = (G+1){(G+1)^2 -3},
ここに、 G = {(a-1)(b-1)(c-1)}^(1/3),
∴ G ≦ √3 -1,
∴ (a-1)(b-1)(c-1) = GGG ≦ (√3 -1)^3 = 2(3√3 -5),
                (じゅー)

64 :132人目の素数さん:2013/07/25(木) NY:AN:NY.AN
log(x+√1+x^2)>sinx (x>0)

65 :132人目の素数さん:2013/07/26(金) NY:AN:NY.AN
ピーター・フランクルの本より出題

任意の実数xについて、
sinx+sin√2x≦2-1/(100*(1+x^2))
が成立することを示せ

66 :132人目の素数さん:2013/07/26(金) NY:AN:NY.AN
あんまし美しいと思えないなあその不等式

67 :132人目の素数さん:2013/07/26(金) NY:AN:NY.AN
>>64
キャスフィーの解答から....

|x| < π/2 のとき、|tan(x)| > |x|

 (d/dx)log(x+√(1+x^2)) = 1/√(1+x^2),
 (d/dx)sin(x) = cos(x) = 1/√{1+tan(x)^2},
から出る。

|x| > sinh(1) = 1.1752 のとき
 (左辺) = arcsinh(x) > 1 ≧ (右辺).

68 :132人目の素数さん:2013/08/28(水) NY:AN:NY.AN
〔問題17〕
非負値の多項式、たとえば
 f(x,y,z) = (x^4)(y^2) + (x^2)(y^4) + (z^6) - 3(xyz)^2,

 {xy(x-y)}^2 + (2|xy| + z^2)(|xy| - z^2)^2,

のように、|xy| と z^2 の多項式によって表わせますが、

x, y, z の多項式の平方の和では表わせないでしょうか?


 (参) ヒルベルト「数学の問題」 No.17

69 :132人目の素数さん:2013/09/28(土) 18:28:22.89
自然数 n≧2 に対して次を示せ。

(1)  Σ_[k=1]^n (-1)^{k+1} n_C_k (1/n^2 )^k < 1/n

(2)  Σ_[k=1]^n n_C_k { 1/(n^2-1) }^k > 1/n

(3)  Σ_[k=1]^{2n} {2n}_C_k { 1/(n^2-1) }^k > 2/(n-1)


ただし、n_C_k = n ! /( k! (n-k)! ) は二項係数とする。

70 :132人目の素数さん:2013/09/28(土) 22:13:24.35
>>69
それ数セミ10月号の問題じゃん

71 :132人目の素数さん:2013/10/04(金) 06:41:24.02
最近「不等式」のレベルを格段に押しげる本が出ると聞いた
いまこそ、学問の)いち分い地一分野になれるかどうか
ともきいやた。

がんばれ不等式
俺は創業以あなた方ファンです。

72 :◆yEy4lYsULH68 :2013/10/04(金) 07:10:46.99


○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●
●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○
○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●
●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○
○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●
●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○
○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●
●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○
○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●
●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○
○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●
●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○●○

73 :132人目の素数さん:2013/10/04(金) 11:32:39.72
>>71
> 最近「不等式」のレベルを格段に押しげる本が出ると聞いた

  ノ     ∧     /) ∧
  彡  ノW \从/V  W \   ミ
  (  ノ        |      ノ \)
  ∩V      、、 |       >V7
  (eLL/ ̄ ̄\/  L/ ̄ ̄\┘/3)
  (┗(      )⌒(      )┛/
   ~| \__/ |  \__/ |~     / ̄ ̄ ̄ ̄ ̄ ̄
    爻     < |  ;     爻     < 続けたまえ
    ~爻     \_/  _, 爻~.      \______
     ~爻__/⌒ ̄ ̄ ̄~~ヽ_ 爻~
     /    ー ̄ ̄\_ ̄\
  _一‘     < ̄ ̄\\\J
<\       ー ̄ ̄ヽ_ヽJ   ̄\_
  \     _ニニニヽ )       ~\
   \  _/⌒|\ ヽ_~~ ~⌒\_
  __/~    V \_|     ~\_

74 :福地 裕:2013/10/04(金) 12:59:17.73
1.不等式 21世紀の代数的不等式論  安藤 哲哉 著  数学書房
ソン何知ってるよたいしたことない。場合は笑って許して。でもここだけは
レベル上げといてね。他はたよりにならんから。


これは大田図書館(大田区)でみつけた。

75 :福地 裕:2013/10/04(金) 13:05:05.59
もう一冊は楽しめそう。

美しい不等式の世界
ーーーー数学オリンピックの問題を題材としてーーーーー

砂糖 淳郎 訳  朝倉書店

残念ながらともに大田図書館所蔵です

76 :福地 裕:2013/10/04(金) 13:07:23.30
私は真摯な数学ファンのあなた方のファンです。がんばってください、

77 :132人目の素数さん:2013/10/04(金) 17:05:18.87
安藤さんは数オリの問題を何問も解いた天才だな

78 :132人目の素数さん:2013/10/07(月) 10:30:44.11
>>77 ご用ですか?
ところで,3変数4次巡回不等式
f(x,y,z) = Σx^4 + A Σx^3 y + B Σ x y^3 + C Σ x^2 y^2 + D Σ x^2 y z
が任意の非負整数 x, y, z に対して f(x,y,z) >= 0 を満たすための
A, B, C, D についての必要十分条件を求めました.
複雑でここに書けないので,以下のプレプリの
Theorem 3.5, Theorem 3.6をご覧下さい.
(2ch制限でLinkが貼れないので,
[安藤哲哉] → 論文・プレプリコーナー → 論文[9] で探して下さい)

79 :132人目の素数さん:2013/10/07(月) 10:33:47.42
(直前の続き ---- 長すぎで2chで拒否されるので)
日本語で読みたい方は以下の正誤表の補遺(系2.3.9b, 系2.3.9c)をご覧ください.
(Linkを貼ろうとすると2chから怒られるので,
[安藤哲哉] → 「不等式」正誤表 で探して下さい)
ここで,S_4=Σx^4, S_{3,1}=Σx^3 y, S_{1,3}=Σ x y^3, S_{2,2}=Σ x^2 y^2, US_1 = Σ x^2 y z です.

80 :132人目の素数さん:2013/10/07(月) 10:44:43.57
すいません。>78 でタイプミスしました。
> が任意の非負整数 x, y, z に対して f(x,y,z) >= 0 を満たすための
が任意の非負実数 x, y, z に対して f(x,y,z) >= 0 を満たすための

81 :132人目の素数さん:2013/10/08(火) 18:28:27.55
証明の肝が不等式であることは実際多いんだよ。
君が何を証明したいにしてもね。

82 :132人目の素数さん:2013/10/13(日) 19:40:49.65
〔問題〕
0 < A,B,C ≦ π/2(△ABCは鈍角△でない)とき、
 cos(A)cos(A)cos(B) + cos(B)cos(B)cos(C) + cos(C)cos(C)cos(A) ≦ 2/(3√3),
 等号成立は (cosA, cosB, cosC) = (0, √(2/3), √(1/3))またはその rotation.
を示せ。

 キャスフィ! - 高校数学 - 不等式2 - 095

83 :132人目の素数さん:2013/10/14(月) 03:23:11.65
>>69-70
 便宜上 C[n,n+1] = 0 としておく。

(1) Σ_[k=1,n] (-1)^{k+1} C[n,k] (1/nn)^k
  = C[n,1](1/nn) - Σ_[k=1,[n/2]] {C[n,2k](1/nn)^(2k) - C[n,2k+1] (1/nn)^(2k+1)}
  = C[n,1](1/nn) - Σ_[k=1,[n/2]] C[n,2k](1/nn)^(2k) {1 - [(n-2k)/(2k+1)](1/nn)}
  < C[n,1] (1/nn) = 1/n,

(2) Σ_[k=1,n] C[n,k]{1/(nn-1)}^k > C[n,1]{1/(nn-1)} = n/(nn-1),

84 :132人目の素数さん:2013/10/14(月) 03:26:51.02
>>69-70

(3) Σ_[k=1,2n] C[2n,k]{1/(nn-1)}^k > C[2n,1]{1/(nn-1)} + C[2n,2]{1/(nn-1)}^2 + C[2n,3]{1/(nn-1)}^3
  > C[2n,1]{1/(nn-1)} + C[2n,2]{1/(nn-1)}^2 + {6(nn-1)(n-2)/3!}{1/(nn-1)}^3
  = C[2n,1]{1/(nn-1)} + n(2n-1){1/(nn-1)}^2 + (n-2){1/(nn-1)}^2
  = C[2n,1]{1/(nn-1)} + 2(nn-1){1/(nn-1)}^2
  = 2n{1/(nn-1)} + 2{1/(nn-1)}
  = 2(n+1)/(nn-1)
  = 2/(n-1),

85 :132人目の素数さん:2013/10/16(水) 16:39:34.30
 S_{m,n} = a^m・b^n + b^m・c^n + c^m・a^n,  >>79

[Corollary 2.6]
 f(a,b,c) = S_3 + p・S_{2,1} + q・S_{1,2} + r・U.
とおく。任意の a,b,c∈R_+ に対して f(a,b,c)≧0 が成り立つための条件は、
以下の2つの条件が成り立つことである。
(1) f(1,1,1) = 3+3p+3q+r ≧ 0.
(2) 4p^3 + 4q^3 +27 ≧ (pq)^2 +18pq or "p≧0 and q≧0"

 //www.math.s.chiba-u.ac.jp/~ando/ineq17.pdf

86 :132人目の素数さん:2013/10/16(水) 17:27:41.96
>>78

〔定理2.3.9d.〕
 f(x,y,z) = S_4 + A・S_{3,1} + B・S_{1,3} + C・S_{2,2} + D・U・S_1,

 f(1,1,1) = 3(1+A+B+C+D) = 0,
を満たすとする。任意の非負実数 x,y,z に対して f(x,y,z)≧0 が成り立つための条件は、
以下の(1)〜(6)のいずれかが成立することである。

87 :132人目の素数さん:2013/10/16(水) 17:30:44.20
>>78 (続き)

(1) C+2≧0, A+B≧0, A≦-2√(C+2), φ(A,B,C)≦0.
(2) C+2≧0, A+B≧0, B≦-2√(C+2), φ(A,B,C)≦0.
(3) C+2≧0, -√(C+4) ≦ A+B ≦ 0, A≧-2√(C+2), B≧-2√(C+2), φ(A,B,C)≧0.
(4) C+2≧0, A+B≧0, A≧-2√(C+2), B≧-2√(C+2).
(5) C≧0, AA+AB+BB ≦ 3C+3.
(6) C+2≦0, A+B≧0, φ(A,B,C)≦0.
ここに、φ(A,B,C) = (ABC)^2 -4(AB)^3 +18(AA+BB)ABC -4(AA+BB)C^3 -(27A^4 +6AABB +27B^4) +16C^4 -80ABCC +144(AA+BB)C -192AB -128CC +256

 //www.math.s.chiba-u.ac.jp/~ando/alg_ineq.pdf

88 :132人目の素数さん:2013/10/19(土) 10:25:56.89
>> 87
その話で,f(1,1,1)=0という条件をはずした場合はどうなるのかというと,
実はかなり難しいのです。
「不等式」正誤表の末尾に,その話を追加しておきました。
長くて難しい話ですので,そちらをご覧下さい。
Linkは>>87の通りです。

89 :132人目の素数さん:2013/10/19(土) 18:40:21.91
>>86-87

 (A,B,C,D) = (0,-3,2,0) の場合が >>41-42

90 :132人目の素数さん:2013/10/20(日) 00:02:09.40
>>41
 和書[8], p.74-75 例題2.3.10 (3)


〔類題〕
a,b,c∈R のとき
 (a^2+b^2+c^2)^2 + (8/√7)(aaab+bbbc+ccca) ≧ 0,

 和書[8], p.77-78 例題2.3.13 (2)

91 :132人目の素数さん:2013/10/21(月) 23:40:17.56
〔問題〕 次式を代数的に示せ。

(1) x≧y≧1 のとき、
 1/(1+x^n) + (n-1)/(1+y^n) ≧ n/(1+x・y^(n-1)),

(2) a_1, a_2, ・・・・, a_n ≧ 1 のとき、
 1/(1+a_1) + 1/(1+a_2) + ・・・・・・・ + 1/(1+a_n) ≧ n/(1+G),
 ここに、G = (a_1・a_2・・・・・・a_n)^(1/n),
 和書[8]、p.170 例題3.3.9 (10)

92 :ななし:2013/10/22(火) 00:26:11.28
>>91

(1) n=1のときは明らかなので n≧2とする。
移項して分母を払うと
 {n + (n-1)x^n + y^n}{1+x・y^(n-1)} - n(1+x^n)(1+y^n)
 = {x・y^(n-1)}兩1 - 兩2
 ≧ 兩1 - 兩2   (← x・y^(n-1) ≧1)
 = (x-y)^2 Σ[k=0,n-2] (k+1){x^k・y^(n-2-k) - x^(n-2-k)・y^k}
 = (x-y)^3 Σ[k=0,n-3] (k+1)(n-2-k) x^k y^(n-3-k)
 ≧ 0,      (← x-y≧0)
ここに
 兩1 = (n-1)x^n - n・x^(n-1)・y + y^n
    = Σ[k=0,n-1] (x-y)(x^k - y^k)x^(n-1-k) ≧ 0,
 兩2 = x^n - n・x・y^(n-1) + (n-1)y^n
    = Σ[k=0,n-1] (x-y)(x^k - y^k)y^(n-1-k) ≧ 0,

(2) nについての帰納法で。

和書[8] のような解析的な方法もあるが....

93 :132人目の素数さん:2013/10/25(金) 13:26:38.30
確率関連の不等式(Markovの不等式とか,Hoeffdingの不等式とか)が充実してる本やサイトってない?

どの本にも載ってなさげなんだが...

94 :132人目の素数さん:2013/10/25(金) 15:43:17.57
stochastic inequalities とか probability inequalities でAmazon検索すればいっぱい出てくる

95 :132人目の素数さん:2013/10/30(水) 12:23:26.57
>>64
キャスフィーの解答から....

 |t| > |tanh(t)|

 (d/dt)arcsin(t) = 1/√(1-tt),
 (d/dt)sinh(t) = cosh(t) = 1/√{1-tanh(t)^2},
から |t|≦1 のとき
 arcsin(t) > sinh(t) > 0,
が出る。
 t > sin(sinh(t)) > 0,

|t| ≧ 1 でもこの式が成立つことは明らか。

 sinh(t) = x とおくと
 arcsinh(x) > sin(x) > 0,

96 :132人目の素数さん:2013/11/07(木) 11:41:28.21
キャスフィーから....

〔問題〕
A,B,C>0, ABC ≧1 のとき
 (A+1)/(A+B+1) + (B+1)/(B+C+1) + (C+1)/(C+A+1) ≦ 2,
 B/(A+B+1) + C/(B+C+1) + A/(C+A+1) ≧ 1,
 等号成立は A=B=C=1.

casphy - 高校数学 - 不等式2 - 028(5), 112

97 :132人目の素数さん:2013/11/15(金) 01:38:28.47
幾何的な不等式でもよければ
幾何学大辞典にもけっこう載ってるよね
著者本人が見つけたやつもいっぱい出てるからチェックしてみるといいよ

98 :ななし:2013/11/15(金) 15:47:56.27
キャスフィー! 不等式2 の じゅー さんへ。
 まづはWEBで....

「一般化固有値問題」(明治大)
http://www.math.meiji.ac.jp/~mk/labo/text/generalized-eigenvalue-problem/generalized-eigenvalue-problem.html

「極値としての固有値」(東京大)
http://www.misojiro.t.u-tokyo.ac.jp/~murota/lect-kisosuri/eigenmax070918.pdf

「§1固有値問題」(早稲田大)
http://www.waseda.jp/ocw/ComputerScience/17-1004345-01NumericalComputationsSpring2003/StudyMaterials/lec6.pdf

「Rayleigh商と2次形式の最大値,最小値」 - Quod Erat Demonstrandum
http://deepwave.web.fc2.com/rayleigh.pdf

99 :ななし:2013/11/21(木) 00:38:50.46
同スレから....

(2) a,b,c >0 のとき
 (ab+bc+ca){1/(a+b)^2 + 1/(b+c)^2 + 1/(c+a)^2} ≧ 9/4,
 等号成立は a=b=c


(6) x,y,z >0 のとき
 xxx(yy+zz)^2 + yyy(zz+xx)^2 + zzz(xx+yy)^2
 - xyz{xy(x+y)^2 + yz(y+z)^2 + zx(z+x)^2} ≧ 0,

キャスフィ! - 高校数学 - 不等式2 - 126〜133

100 :132人目の素数さん:2013/11/21(木) 01:47:49.32
ここで聞くのはスレチだとは思うがわかる人がいたら教えてほしい
以前は Live2ch で キャスフィ! を見れていたのだが
いつからか読み込めなくなった
同じ症状の人いない?

101 :132人目の素数さん:2013/11/24(日) 14:28:07.16
>>99

〔Schur不等式の拡張〕
x,y,z≧0 で、x,y,z が△の三辺をなすとき
 x(a-b)(a-c) + y(b-c)(b-a) + z(c-a)(c-b) ≧0,
 (じゅー)

 キャスフィ! - 高校数学 - 不等式2 - 131〜132

102 :132人目の素数さん:2013/11/24(日) 20:20:27.12
>>99

〔Schur不等式の拡張〕
x,y,z≧0 で、x,y,z が a,b,c と同順または逆順のとき
 x(a-b)(a-c) + y(b-c)(b-a) + z(c-a)(c-b) ≧0,
 (じゅー)

 キャスフィ! - 高校数学 - 不等式2 - 131〜132

103 :132人目の素数さん:2013/11/26(火) 20:40:41.50
>>99 (6)
 yはxとzの中間にあるとしてよい。

 (左辺) - (右辺) = A(x-y)^2 + (A-B+C)(x-y)(y-z) + C(y-z)^2,
ここに
 A = yz(y^3 +z^3) + x(y-z)(y^3 -z^3) > 0,
 A-B+C = 2{(z+x)y - xz}y^3 ≧ 2{Max(x,z)min(x,z) - xz}y^3 = 0,
 C = xy(x^3 +y^3) + z(x-y)(x^3 -y^3) > 0,
より成立。

註) z+x > Max(x,z) > 0, y ≧ min(x,z) > 0, を辺々掛けた。

104 :132人目の素数さん:2013/12/19(木) 20:54:29.76
>>99

(1) 
a,b,cは相異なる正の実数とする。
 ab・log(a/b)/(a-b) + cyc. ≦ (1/3)(√a + √b + √c)^2,
を示せ。log は自然対数です。


(8)
任意の正の実数a,b,cに対し
 a/√(a+b) + b/√(b+c) + c/√(c+a) ≦ (5/4)√(a+b+c),
 等号成立は (a,b,c) = (3,1,0) またはその rotation.

 キャスフィ! - 高校数学 - 不等式2 - 126

105 :132人目の素数さん:2013/12/26(木) 01:23:03.85
|Aut(L/K)|≦[L:K]

106 :132人目の素数さん:2014/01/02(木) 01:31:00.06
>>104 (1)

x>0 のとき
 2Log(x)/{x -(1/x)} = (2t)/{exp(t) - exp(-t)}
 = t/sinh(t)
 ≦ 1,
より
 √(ab)・Log(a/b)/(a-b) = Log(a/b)/{√(a/b) - √(b/a)} ≦ 1,
よって
 (左辺) ≦ √(ab) + √(bc) + √(ca)
     ≦ (1/3)(√a + √b + √c)^2,

107 :132人目の素数さん:2014/01/05(日) 07:45:41.88
↓の不等式うまい方法あるかな ?

a[i],b[i],c[i]>0および
a[i],{b[i]/c[i]}は減少列のとき
(Σa[i]b[i])/(Σa[i]c[i])≧(Σb[i])/(Σc[i])

108 :132人目の素数さん:2014/01/05(日) 11:44:03.96
別にうまくないけど。
分数が嫌だから、b[i]/c[i]をあらためてb[i]として、式を整理すると、
(Σa[i]b[i]c[i])(Σc[i])≧(Σa[i]c[i])(Σb[i]c[i]).
これは (左辺)-(右辺)=Σ[i<j](a[i]-a[j])(b[i]-b[j])c[i]c[j]≧0 からいえる。

109 :132人目の素数さん:2014/01/18(土) 19:41:47.51
〔問題158〕
 a,b,c >0,
 aa+bb+cc + abc = 2(ab+bc+ca),
のとき
 (ab+bc+ca) ≦ 3(a+b+c),
を示せ。

 キャスフィ! - 高校数学 - 不等式2 - 158,161

110 :132人目の素数さん:2014/01/19(日) 12:23:09.17
〔問題163〕
0≦a,b,c≦1 のとき,
 2(a^3+b^3+c^3) ≦ 3 + aab+bbc+cca,
等号成立は (a,b,c) = (0,1,1) (1,0,1) (1,1,0) (1,1,1)

 キャスフィ! - 高校数学 - 不等式2 - 163,164

111 :132人目の素数さん:2014/01/19(日) 20:56:00.76
>>109
 
条件式と aa+bb ≧ 2ab から
 (c+ab)c ≦ (2a+2b)c,
c>0 で割って
 ab ≦ 2a+2b -c,
循環的にたす。


>>110

 1 +aab -(aa +b) = (1-aa)(1-b) ≧ 0,
から
 (aa+bb+cc) + (a+b+c) ≦ 3 + aab+bbc+cca,
が出る。

112 :132人目の素数さん:2014/02/04(火) 00:05:10.49
x+y=2のとき、1/(1+x^2) + 1/(1+y^2) のとりうる範囲は?

普通にやったら泥臭くて吐いた。
(通分してq=xyのみの式に直したもの=kとおき、分母を払って整理した
qの2次方程式がqのとりうる範囲内に少なくとも1つの解を持つ云々)

きれいな解法求む。

113 :132人目の素数さん:2014/02/05(水) 21:27:47.56
>>112

 xx+yy = (x+y)^2 -2xy = 4-2q,

 1/(1+xx) + 1/(1+yy) = (2+xx+yy)/(1+xx+yy+xxyy)
 = (6-2q)/(5-2q+qq) = k,
よって
 -(√2 - 1)/2 < k ≦ (√2 + 1)/2,

 最大は q = (√2 - 1)^2 のとき
 最小は q = (√2 + 1)^2 のとき

114 :132人目の素数さん:2014/02/05(水) 21:29:49.64
入試問題や模試や大学への数学などから持ってきますた。(じゅー)

[1]
 |z+1/2| < 1/2 のとき
 |1+z+…+z^n| < 1 を示せ。 (東工大前期)

[2]
xx+yy+zz=1 のとき
 (1) (x-y)(y-z)(z-x)
 (2) (2x-y)(2y-z)(2z-x)
の取りうる最大の値を求めよ。 (大数宿題)

[3]
a,b,c>0, a+b+c+abc=4 のとき
 a+b+c ≧ ab+bc+ca を示せ。(大学宿題)

[4]
(xx+yy)^2 = xx-yy のとき
x+y の取りうる最大の値を求めよ。(早大プレ)

キャスフィー! - 高校数学 - 不等式2 - 170

115 :ななし:2014/02/05(水) 21:50:26.43
>>114 [3]

 a+b+c=s, ab+bc+ca=t, abc=u とおく。
 s<3 と仮定すると、相加-相乗平均で u<1 となり題意を満たさない。
∴ 3 ≦ s < 4,

 4s(s-t) = -s^3 +4ss -9u + F_1(a,b,c)
     = -s^3 +4ss -9(4-s) + F_1(a,b,c)
     = (4-s)(s-3)(s+3) + F_1(a,b,c)
     ≧ 0,
ここに
 F_1(a,b,c) = s^3 -4st +9u ≧ 0, (Schur)

116 :ななし:2014/02/07(金) 20:38:22.91
>>114

[1] zは中心-1/2, 半径1/2 の円内にある。
  |z| ≦ |z +1/2| + 1/2 < 1,
また、|z|^2 = zz~ = (z +1/2)(z~ +1/2) -1/4 -(z+z~)/2 < -(z+z~)/2,
∴ |1 - z^(n+1)| ≦ 1 + |z|^(n+1)
  < 1 + |z|^2
  < √(1+3|z|^2)
  < √{1 -(z+z~) +zz~}
  = √{(1-z)(1-z~)}
  = |1-z|,

[2] (1) x≦y≦z とする。
 (x-y)(y-x) ≦ (1/4)(z-x)^2,
   等号は y=(x+z)/2 のとき。
 ∴ (x-z)^2 = 2{xx + [(x+z)/2]^2 + zz - (3/4)(x+z)^2}
       ≦ 2{(xx+yy+zz) - (3/4)(x+z)^2}
       = 2{1 - (3/4)(x+z)^2}
       ≦ 2,
   等号成立は (x,y,z) = (-1/√2, 0, 1/√2)
 (左辺) ≦ (1/4)(z-x)^3 ≦ 1/√2,
下限も同様に

[4] 軸を45゚回す。
 u = (x+y)/√2, v = (x-y)/√2,
与式は
 (uu+vv)^2 - 2uv = 0,
ここで、du/dv=0, とおくと、
 2v(uu+vv) -u = 0,
 u = 8v^3 = (√3)v,
 (u, v) = (±√{(3√3)/8}, ±√{(√3)/8})
 2(uu+vv) = u/v = √3,

117 :ななし:2014/02/07(金) 21:06:57.69
>>114 [4]

連珠形とか、Jakob Bernoulli のレムニスケート(Lemniscate)
というらしい....

118 :ななし:2014/02/09(日) 18:15:15.66
>>115

出題者によれば
”今のところ、対称性を崩さない綺麗な証明は見つかっていない。”

 Schur不等式にもそのまま言えそう...

119 :115:2014/02/11(火) 22:14:41.65
>>118

F_1(a,b,c) = a(a-b)(a-c) + b(b-c)(c-a) + c(c-a)(c-b)
  = (ab+ca)(a-b)(a-c)/(b+c) + ・・・・・
  = ab{(a-b)(a-c)/(b+c) + (b-c)(b-a)/(c+a)} + ・・・・・・
  = {ab(aa-bb)^2 + bc(bb-cc)^2 + ca(cc-aa)^2}/{(a+b)(b+c)(c+a)}
  ≧ 0                 (じゅー)

120 :132人目の素数さん:2014/02/11(火) 23:21:48.73
x^3+y^3+z^3=1 (x,y,z>0)の時
xxy+zzxの取りうる最大値を求めよ
(東進数学コンクール)

結局スマートな解法が思いつかないまま〆切を迎えてしまいました

121 :132人目の素数さん:2014/02/12(水) 22:54:44.26
過去問でつが……

〔問題908〕
 正の実数 a,b,c に対して、次を示してくださいです。
 {(a+b+c)(aa+bb+cc)}^2 ≧ 27abc(a^3 +b^3 +c^3),

 2ch - 数学板 - 不等式スレ6 - 908
 キャスフィー! - 高校数学 - 不等式1 - 964

122 :132人目の素数さん:2014/02/15(土) 12:56:22.22
120 Chebyshev kills it
We could see a Golden Section

123 :132人目の素数さん:2014/02/16(日) 15:57:03.91
>>121

 (a+b+c)(aa+bb+cc) = S+p+q,
ここに
 S = aaa + bbb + ccc,
 p = aab + bbc + cca,
 q = abb + bcc + caa,

 (左辺) = (S+p+q)^2
   ≧ 9(Spq)^(2/3)
   ≧ 9(SS・27SU)^(1/3)    (← 補題)
   = 27Su,
ここに
  S = aaa + bbb + ccc,
  T = (ab)^3 + (bc)^3 + (ca)^3,
  U = u^3 = (abc)^3,


〔補題〕
 pq ≧ 3(3STU)^(1/3) ≧ 3√(3SU),

(略証)
 pq = (aab+bbc+cca)(abb+bcc+caa)
   = T + uS + 3uu
   ≧ 3(3STU)^(1/3)
   ≧ 3√(3SU),   {← T≧√(3SU)}

124 :132人目の素数さん:2014/02/16(日) 16:05:17.43
>>123

〔補題〕
 pq ≧ T + 2√(3SU) ≧ 3√(3SU),

(略証)
 pq = (aab+bbc+cca)(abb+bcc+caa)
   = T + uS + 3uu
   ≧ T + 2√(3SU)
   ≧ 3√(3SU),   {← T≧√(3SU)}

125 :132人目の素数さん:2014/02/17(月) 18:51:56.53
>>112-113

 0 < k ≦ (√2 + 1),

 極大は q = (√2 - 1)^2 のとき
 下限は q → -∞ のとき

126 :132人目の素数さん:2014/02/17(月) 23:49:38.94
(*゚∀゚)=3 ハァハァ…

127 :132人目の素数さん:2014/02/20(木) 20:58:32.81
〔問題179〕
x,y,z>0、xyz=1 のとき、
[Easy]
 xx+yy+zz ≧ 3 + 2(x-1)(y-1)(z-1),
[Hard]
 xx+yy+zz ≧ 3 + 2(1-x)(1-y)(1-z),
を示してくださいです。
[Hard] は [Easy] と比較して難しいかなぁって感じでつ。
                  (じゅー)

 キャスフィー! - 高校数学 - 不等式2 - 179

128 :ななし:2014/02/20(木) 21:12:45.27
>>127

Easy の方は
 (左辺)−(右辺) = (x+y+z+1)(x+y+z-3) - 2(xyz-1) ≧ 0 だが...

129 :ななし:2014/02/21(金) 19:15:17.77
>>127

 x+y+z = s,
 xy+yz+zx = t,
 xyz = u,
とおくと Hard の方は
 (左辺)−(右辺) = (ss-2t) -3 +2(u-t+s-1)
   = (ss-4t) +2(u-1) +2s -3
   = {F_1(x,y,z) -9u}/s + 2(u-1) +2s -3
   = {F_1(x,y,z) +(2s-9)(u-1) +(s-3)(2s+3)}/s
   ≧ 0,           (天ぷら)
ここに
 F_1(x,y,z) = x(x-y)(x-z) + y(y-z)(y-x) + z(z-x)(z-y)
   = sss -4st +9u ≧ 0, (Schur)

130 :132人目の素数さん:2014/03/01(土) 10:21:13.88
今年の不等式関連の入試問題
http://nyushi.yomiuri.co.jp/14/sokuho/tohoku/zenki/sugaku_ri/images/mon6_1.gif
http://nyushi.yomiuri.co.jp/14/sokuho/yokohamashiritsu/zenki/sugaku/images/mon2_1.gif
http://nyushi.nikkei.co.jp/honshi/14/gi1-22p.pdf

131 :132人目の素数さん:2014/03/01(土) 10:28:30.65
数オリ
http://www.imojp.org/challenge/old/images/jjmo12mq.jpg
http://www.imojp.org/challenge/old/images/jmo24mq.jpg

132 :132人目の素数さん:2014/03/01(土) 12:30:14.33
  ∧_∧
  ( ;´∀`) <興奮してきた…
  人 Y /
 ( ヽ し
 (_)_)

133 :132人目の素数さん:2014/03/01(土) 18:40:56.44
>>131 (2014年JMO本選)

〔問題5.〕
不等式
 a/{1+9bc+4(b-c)^2} + b/{1+9ca+4(c-a)^2} + c/{1+9ab+4(a-b)^2} ≧ 1/2,
が a+b+c=1 をみたす任意の非負実数a,b,cに対して成り立つことを示せ。

134 :132人目の素数さん:2014/03/03(月) 02:35:18.55
>>130
イェンゼンをそのまま出すってつまらないな

135 :132人目の素数さん:2014/03/05(水) 21:41:46.78
>>133

a+b+c=s のとき、コーシーにより、
 {a[ss+9bc+4(b-c)^2] + b[ss+9ca+4(c-a)^2] + c[ss+9ab+4(a-b)^2)]}(左辺)
  ≧ (a+b+c)^2 = ss,
よって
 (左辺) ≧ ss/{sss+27abc+4[s(ab+bc+ca)-9abc]}
  = ss/{sss +4s(ab+bc+ca) -9abc}
  ≧ ss/(2sss)  (← Schur)
  = 1/(2s),    (じゅー)

136 :132人目の素数さん:2014/03/09(日) 23:29:23.76
この『じゅー』って今年阪大挑戦枠受かった子?

137 :132人目の素数さん:2014/03/10(月) 01:21:57.02
知らんがなw

138 :132人目の素数さん:2014/03/10(月) 01:30:38.44
自己紹介乙!

139 :132人目の素数さん:2014/03/10(月) 08:24:33.61
阪大の合格発表見たけど
数学挑戦枠の合格者一人だけだった
去年に引き続きなかなかエグい試験だったってことだな

140 :132人目の素数さん:2014/03/11(火) 04:31:34.09
この人
https://twitter.com/yjjswm

141 :prime_132:2014/03/15(土) 21:42:02.66
いちょう祭が楽しみ...♪

ちなみに小生は学科違いの S53入、S59院卒 だが何か?

142 :132人目の素数さん:2014/03/15(土) 22:14:50.71
>>136-141

http://uni.2ch.net/test/read.cgi/math/1331245369/
へ ドゾー

143 :132人目の素数さん:2014/03/17(月) 23:38:33.45
a,b,cは負でない実数でかつab+bc+ca+abc=4を満たす時
a+b+c≧ab+bc+ca

144 :132人目の素数さん:2014/03/20(木) 23:49:29.60
>>114 [3] の類題?

>>115

145 :ななし:2014/03/24(月) 20:20:36.02
>>143

s,t,u を >>115 のようにおく。
 t<3 と仮定すると、相加-相乗平均で u<1 となり題意を満たさない。
∴ 3 ≦ t < 4,

s≧4 のときは明らか。
s<4 のとき
 (4s+9)(s-t) = -s^3 +4ss +9(s-t-u) + F_1(a,b,c)
   = -s^3 +4ss +9(s-4) + F_1(a,b,c)
   = (4-s)(s-3)(s+3) + F_1(a,b,c)
   ≧ 0,    (← s≧√(3t)≧3)
ここに
 F_1(a,b,c) = s^3 -4st +9u ≧ 0, (Schur)

146 :132人目の素数さん:2014/03/29(土) 01:38:18.83
>>120

相加-相乗平均
 axxx + axxx + yyy ≧ (1/k)xxy,
 (1-2a)xxx + zzz/2 + zzz/2 ≧ (1/k)xzz,
を辺々たすと
 xxx+yyy+zzz ≧ (1/k)(xxy+xzz),

係数を比べて、
 aa = (1-2a)/4 = 1/(3k)^3,
aを消すと、
 k = (1/3)(1+√5)^(2/3) = 0.729273617

casphy - highmath - 不等式2 - 173-174
//twitter.com/Inequaltybot/ [181]

147 :132人目の素数さん:2014/04/01(火) 22:21:02.29
正数x,y,zが xyz = 1 のとき
 x^3 + y^3 + z^3 + 1/x^3 +1/y^3 + 1/z^3 - 6*( x/z + y/x + z/y ) +12 ≧0


って成り立ちますか?

148 :132人目の素数さん:2014/04/02(水) 09:59:59.81
x^2−x−1=0。
y=1。
z=x−1。

149 :132人目の素数さん:2014/04/05(土) 21:17:36.82
正変数a_1, a_2, ・・・, a_n について A_n = (a_1+a_2+・・・+a_n)/n , G_n = (a_1*a_2*・・・*a_n)^(1/n) とするとき

 n(A_n-G_n) ≧ (n-1)(A_(n-1) - G_(n-1))

が成り立つそうなのですがどう示されるのでしょう

150 :132人目の素数さん:2014/04/07(月) 20:05:40.74
(a^4+b^4+c^4)^3≧(a^3+b^3+c^3)^4ってどうやって示せばいいんだっけ

151 :132人目の素数さん:2014/04/07(月) 20:26:10.23
頭わるそうなやり方だけどlog取って12で割って増減調べりゃいいんじゃない

152 :132人目の素数さん:2014/04/07(月) 22:52:36.08
a=b=cの時成り立たなさそうなんだがどうなの

153 :132人目の素数さん:2014/04/14(月) 01:01:15.95
>>121-124
 //twitter.com/Inequalitybot/ [186]

154 :132人目の素数さん:2014/04/14(月) 01:07:10.40
〔問題〕
a,b,c>0 に対して、次を示してくださいです。
 (a+b+c)^2・(a+b)(b+c)(c+a) ≧ 24abc(aa+bb+cc),

 //twitter.com/Inequalitybot/ [196]

155 :132人目の素数さん:2014/04/19(土) 11:15:48.14
http://sothear.files.wordpress.com/2010/03/topics-in-inequalities-hojooleetin0508251.pdf#search='x%5E2y%5E2z%5E22xyz%3D1'
(*゚∀゚)=3 ハァハァ…

156 :132人目の素数さん:2014/04/20(日) 08:45:13.02
√2 + √3 > π を証明せよ、ゆとり向けに。

157 :132人目の素数さん:2014/05/04(日) 03:05:01.23
 2sinθ + tanθ > 3θ,
これは Snellius-Huygensの不等式として知られている。

この不等式で θ= π/4 - π/6 = π/12 として
 sinθ = sin(π/4 -π/6) = (√3 -1)/(2√2),
 tanθ = tan(π/4 -π/6) = 2-√3,
を使えば
 4{(√3 -1)/√2 +(2-√3)} > π,

√2 + √3 = 4{(√3 -1)/√2 +(2-√3)} + (√2 -1)^2・(2-√3)^2・(√3 -√2)
> 4{(√3 -1)/√2 +(2-√3)}
> π,
                  ぬるぽ

158 :132人目の素数さん:2014/05/04(日) 03:24:20.18
>>149
a_n = a と略記する。
n・A_n = (n-1)A_(n-1) + a,
n・G_n = n・{G_(n-1) ^(n-1)・a}^(1/n)
 ≦ (n-1)G_(n-1) + a, (←相乗・相加平均)
辺々引く。
                ぬるぽ

159 :132人目の素数さん:2014/05/04(日) 04:15:33.55
>>114-116

[1] ・・・ [183]
[2] ・・・ [182]
[3] ・・・ [184]
[4] ・・・ [178]

https://twitter.com/Inequalitybot/

160 :132人目の素数さん:2014/05/07(水) 00:25:04.63
>>143-145

(別解)
a,b,c の2つが1以上、または2つが1以下。
a,b をその2つとすると
 4 = (a+b+c) + abc = (a+b)(1+c) + (1-a)(1-b)c ≧ (a+b)(1+c),
 (a+b+c) - (ab+bc+ca) = (a+b){4-(a+b)(1+c)}/4 +(a-b)^2・(1+c)/4 +(1-a)(1-b)c ≧0,

//www.casphy.com/bbs/highmath/ 不等式2 - 170[3] 〜172
//twitter.com/Inequalitybot/ [184]

161 :132人目の素数さん:2014/05/12(月) 21:26:52.73
> 154
f(a,b,c) = (a+b+c)^2 (a+b)(b+c)(c+a) - 24a b c(a^2+b^2+c^2)
とおく。x ≧ 0 のとき、
f(x,1,0) = x (1 + x)^3 ≧ 0
f(x,1,1) = 2(x+1)^2(x-2) ≧ 0
よって、安藤哲哉「不等式」定理2.3.1(2)より f(a,b,c) ≧ 0.

ところで、同書の記号で
f(a,b,c) = T_{4,1} + 3T_{3,2} + 10 US_{1,1} - 18 US_2
なので、定理2.4.1が使えない。そこで、次の定理を提案する。

定理2.4.1b
f(a,b,c) = T_{4,1} + p T_{3,2} + q US_2 - (2+2p+q) US_{1,1}
とおく。任意の非負実数 a,b,c に対して f≧0 となるための必要十分条件は
次の(1)と(2)が成立することである。
(1) p ≧ -1
(2) 2p+q+4 ≧ 0 または (2p+q)^2 + 8q ≦ 0

162 :132人目の素数さん:2014/05/12(月) 21:27:39.56
> 154
f(a,b,c) = (a+b+c)^2 (a+b)(b+c)(c+a) - 24a b c(a^2+b^2+c^2)
とおく。x ≧ 0 のとき、
f(x,1,0) = x (1 + x)^3 ≧ 0
f(x,1,1) = 2(x+1)^2(x-2) ≧ 0
よって、安藤哲哉「不等式」定理2.3.1(2)より f(a,b,c) ≧ 0.

ところで、同書の記号で
f(a,b,c) = T_{4,1} + 3T_{3,2} + 10 US_{1,1} - 18 US_2
なので、定理2.4.1が使えない。そこで、次の定理を提案する。

定理2.4.1b
f(a,b,c) = T_{4,1} + p T_{3,2} + q US_2 - (2+2p+q) US_{1,1}
とおく。任意の非負実数 a,b,c に対して f≧0 となるための必要十分条件は
次の(1)と(2)が成立することである。
(1) p ≧ -1
(2) 2p+q+4 ≧ 0 または (2p+q)^2 + 8q ≦ 0

163 :132人目の素数さん:2014/05/13(火) 05:50:13.76
ついでに、S_5 と T_{4,1} の係数が 0 の場合は以下の通りです。

定理2.4.1c
f(a,b,c) = T_{3,2} + q US_2 - (2+2p+q) US_{1,1}
とおく。任意の非負実数 a,b,c に対して f≧0 となるための必要十分条件は
q ≧ -2

ここで(上の投稿を含めて)
T_{i,j} = Σ a^i b^j (6項対称和)
S_{i,j} = Σ a^i b^j (3項巡回和)
U = abc

164 :132人目の素数さん:2014/05/28(水) 03:56:36.47
B4638、B4640、http://www.komal.hu/verseny/feladat.cgi?a=honap&h=201405&t=mat&l=en

A616、B4626、B4628、http://www.komal.hu/verseny/feladat.cgi?a=honap&h=201404&t=mat&l=en

B4620、http://www.komal.hu/verseny/feladat.cgi?a=honap&h=201403&t=mat&l=en

A609、B4606、http://www.komal.hu/verseny/feladat.cgi?a=honap&h=201402&t=mat&l=en

A605、http://www.komal.hu/verseny/feladat.cgi?a=honap&h=201401&t=mat&l=en

B4585、http://www.komal.hu/verseny/feladat.cgi?a=honap&h=201312&t=mat&l=en

A593、http://www.komal.hu/verseny/feladat.cgi?a=honap&h=201309&t=mat&l=en

C1168、http://www.komal.hu/verseny/feladat.cgi?a=honap&h=201304&t=mat&l=en


_| ::|_
 ̄| ::|/|           ┌──┐
  | ::|  |     .┌──┐| ∧_∧  いいな、俺たちの誰かが殉職したら・・
/|_|  |┌──┐| ∧_∧|(・ω・` )
  |文|  | | ∧_∧(    )⊂   )
  | ̄|  | | (    )⊂   ) (_Ο Ο :::
  | ::|  | | ⊂   ) (_Ο Ο わかってる、生き延びた奴が
  | ::|/ .|_ (_Ο Ο ::::::::: :::::: 不等式を収集し、証明する !
  | ::| :::::::::::::::::::::::::::::::: 俺たちゃ死んでも仲間だぜ !!

62 KB
■ このスレッドは過去ログ倉庫に格納されています

★スマホ版★ 掲示板に戻る 全部 前100 次100 最新50

read.cgi ver 05.02.02 2014/06/23 Mango Mangüé ★
FOX ★ DSO(Dynamic Shared Object)